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ABSTRACT 

^ 
The Semi-Markov Decision model is considered under 
the criterion of  long-run average cost.    A new 
criterion, which for any policy considers the limit 
of the expected cost Incurred during the first    n 
transitions divided by  the expected length of  the 
first    n    transitions,   is considered.    Conditions 
guaranteeing that an optimal stationary  (non- 
randomized)  policy exist are then presented.     It 
is also shown that  the above criterion is equivalent 
to the usual one under certain conditions. 
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AVERAGE COST SEMI-MARKOV DECISION PROCESSES 

by 

Sheldon M.   Ross 

1.     INTRODUCTION 

A process Is observed at  time    0    and classified into some state    x e x  . 

After classification,  an action    a  e A    oust be chosen.     Both the   state space 

X    and  the action space    A    are assumed   to be Borel subsets of complete,  separable 

metric spaces. 

If  the  state  is    x    and action    a     is chosen,  then 

(I) the next  state of  the process   is chosen according  to a  known regular 

conditional probability measure    P(«   j  x,a)    on the Borel  sets of    ^   , 

and 

(II) conditional on the  event  that   the next state  is    y  ,   the  time until 

the  transition from    x     to    y    occurs is a random variable with known 

distribution    F(a   |   x,a,y)   .     After the  transition occurs,  an action Is 

again chosen and   (1)  and   (11)   are repeated.    This  is assumed to go on 

indefinitely. 

We further  suppose  that a cost structure is imposed on the model  in the 

following manner:     If action    a    is chosen when In state    x    and  the process 

makes a transition    t    units  later, then  the cost incurred  by time     s(s <_ t) 

after  the action was taken Is given by a  known real-valued  Baire  function 

C(s   |  x,a)   . 

If one allows   the  cost   to also dopend  upon  the next   state  visited,   then 
C(s   |   x,a)     should  be   Interpreted  as ;in  expected cost. 



In order to ensure that transitions do not take place too quickly, wc shall 

need to assume the following: 

Condition 1; 

There exists    6  > 0 ,  e  >  0  ,  such that 

I     F(6   1  x,a,y)dP(y  |  x,a)  < 1 -  e for all    x  , a  . 

In other words, Condition 1 asserts that for every state    x    and action    a    there 

is a positive probability of at  least    e    that the transition time will be greater 

than    6 . 

A policy    it    is any measurable rule for choosing actions.    The problem is to 

choose a policy which minimizes the expected average cost per time.    When the time 

between transitions is identically    1 ,  then the process  is called a Markov 

decision process and has been extensively studied  (see,  for instance,   [2],   [5]  and 

[61).    When this restriction is lifted, we have a semi-Markov decision process and 

results have only previously been given for the case where    A   and    S    are  finite 

(see  [3] and [4]). 



2.  EQUALITY OF CRITERIA 

Let X  and a  be respectively the nth .-täte of the process and the nth 

action chosen, n - 1,2, ... Also, let t  be the time between the (n - l)st 

and the nth transition, n >_ 1 . 

Furthermore, let Z(t)  denote the total cost Incurred by t , and let Z 

be the cost Incurred during the nth transition Interval;  and define for any 

policy  TT 

n 

*1(x) "  lim E l^p-  | X - x 
IT irl t  '  1 

and 

4» (x) *  lim 
TT 

E 
TT 

n 

1-1    1 
Xl " X 

E 
IT 

n 

I \ 
1-1    1 

X    - x 

1      2 
Thus $      and $      both represent, in some sense, the average expected cost. 

1 2 
Though 41   is clearly more appealing, it will be criterion (^  that we shall 

deal with.  Fortunately, it turns out that under certain conditions both criterlons 

are identical. 

Definition: 

A policy is said to be stationary if the action it chooses only depends on 

the present state of the system. 

The reader should note at this point that if a stationary policy is employed 

then the process {X(t),t ^_ 0} is a semi-Markov process, where X(t) represents 

the state of the process at time  t . 

Of course,  Z(t) and Z  are determined by X. , a. , T. , 1 > 1 . 
' n '  1   1 '  t '  — 



For any initial state x , let 

T - Inf U > 0 : X(t) - x , X(t") +  x} , 

and 

N - mln {n > 0 : X i, - x} . 
n+l 

Hence, T is the time of the first return to state x and N is the number of 

transitions that it takes. 

Lemma 1; 

If Condition 1 holds,  and if    E [T  | X.  - x]  < " , then    E^N  |  X1 = x]  < » 

N 
and   T ■    y    T    . 

n"l 

Proof; 

N 
By the definition of    T    and   N    it follows that    T ^   ^    T     , with equality 

i    n 

n-1 
holding if    N < «  .    Now,  if we let 

0    if    T    < 6 
a — 

,6    with probability   -z    if    T    > 6   , 
/(1 - F(6   |   x,y.a))dP(y  |  x.a) n 

T*\ X-x.a-a 
n       I n '    n 

0    with probability    1 - ~     if    T    > 6   . 
J (1 - F(6   |  x,y,a))dP(y   |  x.a) n 

^ X    ■ x  , a    = a 
n n 

then it follows from Condition 1 that    x     , n - 1,2,  ...    are Independent and 
n 

identically distributed with 

If the set  in brackets  is empty then take    N    to be    • ,  and similarly   for    T  . 



P{T - 6} = e •= 1 - P{T - 0} . 
n n 

N __ 
Now, from Wald's equation it follows that if EN = » then E £ T ■ 00 , and hence 

N N _ 
that    ET>EyT    >EyT    =»     (since    T    < T )   . 

—     r   n •"•     S*    n n—   n 

Q.E.D. 

Theorem 1; 

Assume Condition 1.    If    IT    is a stationary policy,  and if    E [T   |  X.  * x]   < M  , 

then 

1 2 Ef[Z(T)   |  X1 - x] 
*n(x)  = ^(x)  =    E [T   | x    - xl       • 

Proof; 

Suppose throughout the proof that X. = x . Now, under a stationary policy 

{X(t),t ^_ 0} is a regenerative process with regeneration (or cycle) point T . 

Hence, by a well known result 

$   (i) ■ E [cost incurred during a cycle]/E [length of cycle] 

- E fZT]/E T . 
IT       1 IT 

Also,   it  is easy to see that     {X    ,  n ■ 1,2,   ...}    is a discrete time regenerative 

process with regeneration time    N  .    Hence, by regarding    Z.,  + ... + Z-,    as the 

"cost"  Incurred during the first cycle of this process,  it follows by the same 

well known result that 

m N 
(1) E      y Z  /m    -> E      y    Z /E N as    m 

IT    '•, n n    i-,    n    TT 
n»l n=l 



where we have used Lemma 1  to assert that    E N < ^ .    However, we may also regard 

Tj + ...  + TN    as  the "cost" incurred during  the  first cycle and hence,  by the 

same reasoning, 

m N 
(2) E      I    T  /m -> E       I     T  / E N 

n»! n^l 
as    m -► oo 

By combining  (1)   and  (2) we obtain 

N 
E   y z 

Mx) N— • 

n"l 

N 
However, since N < o» (Lemma 1) it is easy to see that  ^ Z = Z(T)  and 

i     n 

n=l 
N 
y    T    ■ T   ,  and the result follows. 
*•,    n n-1 

Remarks: 

Q.E.D. 

It also follows  from the above proof that, with probability 1, 

m 
L,     n 7m                 n.l      "       E   [Z(T)] ,.    Zit)      ,,    n»l w  

n-1 

Also, suppose that the initial state is y , y / x . When is it true that 

12 1 ♦  (y) - 4»  (y)  - <ji   (x)   ?    One answer is  that  if, with probability 1,   the process 

will eventually enter state    x  ,  then    {X(t),t >_ 0}    is a delayed   (or general) 

regenerative process,  and the proof goes  through in an identical manner. 

Let 



CD n T(x,a) -      j     J    t^it  1 x.aiy)dP(y  |  x.a) 

yex    0 

and 

C(x,a) -       f    j    C(t   I x,a)dF(t   |  x,a,y)dP(y  | x,a)  . 

ye*    0 

We shall suppose that both    C(x,a)    and    T(x,a)    exist and are finite for all 

x t a . 

We also note that the expected cost Incurred during a transition Interval and 

the expected length of a transition Interval only depend on the parameters of the 

process through    T(x,a)   ,  C(x,a)    and    ?(•   | x,a)   ; and, as a result,    $      only 

depends on the parameters of the process through these three functions.    Thui, we 

may choose the cost and transition time distributions in as convenient a manner as 

possible; and hence for the remainder of this paper,  let us suppose that 

and 

That is, we suppose that the time until transition is (with probability 1) 

T(x,a)  and that a cost of C(x,a)  is incurred at the time of transition. 



3. AVERAGE COST RESULTS 

Theorem 2: 

Assuming Condition 1,  if  there e:;i3ts a bounded Baire function    f(x)   , x e  K  , 

and a constant    g  ,  such that 

(3) J f(x)  - min (C(x,a) +     I    f(y)dP(y   1  x,a)  - gT(x,a)} x e ^ 

then, for any policy n  which, when in state x , selects an action minimizing 

the right side of (3), we have 

2 2 
<> *(x) - g = min * (x) 

Ä IT 
TT It 

for all x e ^ 

Proof: 

Let Si  -(^.Sj^, ..., X1,ai) , i « 1,2, ... For any policy IT 

^[il ^ " ^^ ' Si-l)1 0 . 

But, 

E^lfCX,) I St-il " j f(y)dP(y I x^.a^^ 

- CCX^.a^) +  f f(y)dP(y | X^^a^^ - g^(X^^a^^ 

n 

min 
a 

- CCX^.a^) + g:r(Xi_;L.a1-1) 

f(y)dP(y | X^j^.a) - grCX^.a) 

- C(Xi_l,ai_1) + grCX^a^) 

■C(Xi-l'a)+ | 

- f(x1_1) - c<x
1,1.Vi) + ^i-i'Vi* • 



with equality for    IT    ,  since    ir      takes the minimizing actions.    Hence, 

or 

n 

1-2 

11 

Eir J2 
5CXl-l'ai-l)        EjfCV  - fCX^l 

g   <^  s^s  + 

1"2 1-2 

with equality for IT . By letting n •* » and using the boundedness of f and 

n 
the fact that Condition 1 Implies that E £ ^Xi-i'ai-l^ 1 n e { ■*" c,, » we obtain 

_E
Tf^2

S(Xi-l'ai-l)   2 
g <. 11m i—  tfaj 

*~ \ j2 ^
Xi-rai-i> 

with equality for    TT      and for all possible values of   X.   . 

Remarks; 

The above proof is an adaptation of one given in [ 6 1 for Markov decision 

processes. We have tacitly assumed that a rule minimizing the right side of (3) 

may be chosen in a measurable manner. Clearly a sufficient (but by no means 

necessary) condition is that the action space A be countable. 

In order to determine sufficient conditions for the existence of a bounded 

function f(x) and a constant g satisfying (3), we introduce a discount factor 

a , 0 < a < » , and continuously discount costs. That is, we suppose that 



10 

a cost of C  incurred at time t is equivalent to a cost Ce    incurred at 

time 0 . 

Let V  (x)  denote the total expected discounted cost when TT is employed, 
IT fOL 

and the initial state is x : and let V (x) = inf V  (x) .  Then, it may be 
' a IT,a 

IT 

shown by standard arguments  (see  [1])  that 

(4) tr  /  \ J     ) -aT(x,a) V  (x)  = min <e      ^  >   / 

00 

C(x,a)  +   J    Vjy)dP(y  |  x.a) 

0 

Now, fix some state—call it 0—and define 

f (x) = V (x) - V (0) . 
a      a      a 

From (4), we obtain 

(5) V (0) + f (x) - min Je-
aT(x'a) C(x,a) + j fa(y)dP(y 1 x,a) + Va(0) 

We shall need the following condition; 

Condition 2: 

There exists an M < ^ , such that 

C(x,a) <_MT(x,a)      for all x , a . 
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Theorem 3; 

Under Conditions 1 and  2,  If  the action space    A    Is finite, and if 

{f   (x)   ,  0 < a < c}     is a uniformly bounded equlcontlnuous family of functions for 

some    0 < c < 0° ,  then 

(i)        there exists a bounded continuous function    f(x)    and a constant    g 

satisfying  (3); 

(ii)      for some sequence    o    -♦■ 0  ,  f(x)  ■ lim f    (x)  ; 
n-K»      n 

(ill)    lira aV  (x) = g    for all    x e K  • 
o->-0      a 

Proof; 

From (5), we obtain that 

fa(x) - min <e-aT(x*a) 

(6) a 

00 

C(x,a) +    j    fa(y)dP(y  | x,a) 

0 X 

- Va(0)(aT(x,a) + o(a))>  . 

Mow, by the Arzela-Ascoli theorem there exists a sequence a -*- 0 and a 

continuous function f  such that lim f  (x) » f (x)  for all x . Also, it 
n->«  n 

follows from Conditions 1 and 2 that    aV  (0)    is bounded, and hence we can require 

that    lim a V    (0)  = g    exists.    The results  (1) and (ii) then follow by letting 
no n-*» n 

a    -*- 0    in (6) and using Lebesgue's dominated convergence theorem. 

The proof of   (ill)   is  identical wi:h the one given in [6]. 



12 

4.    AN EXAMPLE 

Suppose that batches of letters arrive at a post office at a Poisson rate    X   , 

Suppose further that each batch consists of    j    letters with probability    P    , 

J ^ 1  ,   independently of each other.     At any time, a truck may be dispatched to 

deliver the letters.    Assume that the cost of dispatching the  truck is    K , and 

also that the cost rate when there are    J    letters present is    C.   ,  an increasing, 

positive,  bounded sequence,    j ^ 1  •     The problem is to choose a policy minimizing 

the long-run average cost. 

The above may be regarded as two action semi-Markov decision process with 

states    1,2,3,   ...   ; where state    1    means that there are    1    letters presently 

in the post office.    Action    1    is "dispatch a truck" and action    2    is "don't 

dispatch a truck."    (Note that since a truck would never be dispatched if there 

were no letters in the post office, we need not have a state    0 .) 

The parameters of the process are: 

P(J/i,l) - P , P(i + j/i,2) - ?i 

T(i,l)  • 1/X ,  T(i,2) - 1/X 

5(1.1)- K +im, ä(i,2)-^. 

Now,  if we let 

v/K /4  IN 4    iv ^ C(0)      C(i)l i     Va(i,l) - mln ^K + -*-«■ ; —^    J    t 

and for    n > 1 

ea/X 
!00 00 ' 1 

K + cigi+ j-  pjVa(j>n. ^ . ciii+ £ pjVa(i +j>n. D 

then it follows by induction that V (i,n) is increasing in i for each n . 
a 

Also, since costs are bounded and the discount factor e    < 1 , it follows that 
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V (1) - lim V (i,n)   ,  and hence    V (i)    Is increasing.    Also,    Vo(i)     satisfits 
n 

(7)      ea/XVaCi) - min {K jK + cM + jiVa(j)iciii + jiYaa + j)j. 

We will now show that V (i) - V (1)  is uniformly bounded and hence Theorem 3 is 
a a 

applicable.    To do this, we consider two cases: 

Case i: 

ea/XV  (1) - K + ^-+    I    P4V  (j)   . 

In this case, we have by (7)  that    V (i)  <_ V (1)    and hence,  by monotonicity, 

V (i) - V (1) for all    i a a 

Case ii: 

a/X e 
00 

V (!) . Cill+    j- (1        . 
a A j-i    J «^ 

In this case, we have by  (7)  that 

»At,  /IN  .    a/X„ ,,.  ^ v ^ CCO 
00 

ea/AV a) 1 ea,Av (i) < K + ^-+   I   pv(J) 

1K + ^-+    I    P.V (j +1) 
K j-1    J a 

. K + CM . Cüi + ea/Xv _ 
XX a 

Thus,   in either case    V (i)  - V (1)     is uniformly bounded and hence by Theorem 3 

there exists an increasing function    f(i)    and a constant    g    such that 



u 

!oo ,00 I 

and the policy which chooses  the minimizing actions  is optimal. 

Now,  if we let 

i    - oin <i |i:^+    I    PjMj-h 1) >K + ^-+    I    PjhCj)' 

then it follows from the monotonlcity of C(l) and h(i) that the optimal policy 

Is to dispatch a truck whenever the number of letters in the post office Is at 

least 1 ; and hence, the structure of the optimal policy is determined. 
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